98 research outputs found

    Mapping of major volcanic structures on Pavonis Mons in Tharsis, Mars

    Get PDF
    Pavonis Mons, with its 300 km of diameter and 14 km of height, is one of the largest volcanoes of Mars. It rests on a topographic high called Tharsis rise and it is located in the centre of a SW-NE trending row of volcanoes, including Arsia and Ascraeus Montes. In this study we mapped and analyzed the volcanic and tectonic structures of Pavonis Mons in order to understand its formation and the relationship between magmatic and tectonic activity. We use the mapping ArcGIS software and vast set of high resolution topographic and multi-spectral images including CTX (6 m/pixel) as well as HRSC (12.5 m/pixel) and HiRiSE (∌0.25 m/pixel) mosaic images. Furthemore, we used MOLA (∌463 m/pixel in the MOLA MEGDR gridded topographic data), THEMIS thermal inertia (IR-day, 100 m/pixel) and THEMIS (IR-night, 100 m/pixel) images global mosaic to map structures at the regional scale. We found a wide range of structures including ring dykes, wrinkle ridges, pit chains, lava flows, lava channels, fissures and depressions that we preliminary interpreted as coalescent lava tubes. Many sinuous rilles have eroded Pavonis’ slopes and culminate with lava aprons, similar to alluvial fans. South of Pavonis Mons we also identify a series of volcanic vents mainly aligned along a SW-NE trend. Displacements across recent crater rim and volcanic deposits (strike slip faults and wrinkle ridges) have been documented suggesting that, at least during the most recent volcanic phases, the regional tectonics has contributed in shaping the morphology of Pavonis. The kinematics of the mapped structures is consistent with a ENE-SSW direction of the maximum horizontal stress suggesting a possible interaction with nearby Valles Marineris. Our study provides new morphometric analysis of volcano-tectonic features that can be used to depict an evolutionary history for the Pavonis Volcano

    Fluids mobilization in Arabia Terra, Mars: depth of pressurized reservoir from mounds self-similar clustering

    Full text link
    Arabia Terra is a region of Mars where signs of past-water occurrence are recorded in several landforms. Broad and local scale geomorphological, compositional and hydrological analyses point towards pervasive fluid circulation through time. In this work we focus on mound fields located in the interior of three casters larger than 40 km (Firsoff, Kotido and unnamed crater 20 km to the east) and showing strong morphological and textural resemblance to terrestrial mud volcanoes and spring-related features. We infer that these landforms likely testify the presence of a pressurized fluid reservoir at depth and past fluid upwelling. We have performed morphometric analyses to characterize the mound morphologies and consequently retrieve an accurate automated mapping of the mounds within the craters for spatial distribution and fractal clustering analysis. The outcome of the fractal clustering yields information about the possible extent of the percolating fracture network at depth below the craters. We have been able to constrain the depth of the pressurized fluid reservoir between ~2.5 and 3.2 km of depth and hence, we propose that mounds and mounds alignments are most likely associated to the presence of fissure ridges and fluid outflow. Their process of formation is genetically linked to the formation of large intra-crater bulges previously interpreted as large scale spring deposits. The overburden removal caused by the impact crater formation is the inferred triggering mechanism for fluid pressurization and upwelling, that through time led to the formation of the intra-crater bulges and, after compaction and sealing, to the widespread mound fields in their surroundings

    Earth is speaking: listen her! On-line questionnaire about anomalous geological and biological phenomena

    Get PDF
    Earthquakes can be associated with non-seismic phenomena which may manifest many weeks before and after the main shock. These phenomena are characterized by ground fractures and soil liquefactions at surface often coupled with degassing events, chemical alterations of water and soils, changes in temperature and/or waters level in the epicentral area. Further manifestations include radio disturbances and light emissions. On the other hand, anomalous behavior of animals has been reported to occur before environmental changes. The co-occurrence of several phenomena may be considered as a signal of subsurface changes, and their analysis may be used as possible forecast indicators for seismic events, landslides, damages in infrastructure (e.g., dam) and groundwaters contamination. In order to obtain an accurate statistical analysis of these factors, a pre-crisis large database over a prolonged period of time is a pre-requisite. To this end, we elaborated a questionnaire for the population to pick up signs about anomalous phenomena like as: animal behavior, geological manifestations, effect on vegetation, degassing, changes on aquifers, wells and springs. After the January 25, 2013, mainshock (ML 4.8) in the Garfagnana seismic district, the Bagni di Lucca Municipality was selected as pilot site for testing this questionnaire. The complexity, variety and extension of this territory (165 kmq) sound suitable for this project. Bagni di Lucca is located in the southern border of the Garfagnana seismogenic source, characterized by the carbonate Mesozoic sequences and the Tertiary terrigenous sedimentary deposits of the Tuscan Nappe. The questionnaire was published on Bagni di Lucca web site (https://docs.google.com/file/d/0Bzw3vOYX47XoTGltTVJRbkJuajA/edit) in collaboration with Municipal Commitee, Local Civil Protection and Local Red Cross, and sent by ordinary mail to the citizenry. It is possible to answer to the questionnaire, also anonymously, direct on line (https://docs.google.com/forms/d/1LVNVQFzMoJJfNxp2eSPAc4pcwj4_qIdbAnvbCWGyXy8/viewform?pli=1), calling the Local Civil Protection or Local Red Cross, and by mail. In a second time, an application for Smartphone and Tablets will be developed to allow a faster reply. The questionnaire, constituted by eleven questions and organized in four macro-themes (i.e. animal behavior, geological factors, vegetation anomalies and hydrogeological changes) has been published in June 2013 and will remain on-line for several years. Indeed, the social perception is not fully trustworthy during and soon after an earthquake. So far this is the first attempt to acquire data during quiescent times for comparison with post-seismic ones. This approach may provide clues to identify phenomena properly linked to the event. This questionnaire can be a useful tool to educate population not only about earthquake precursors but also to recognize the "Earth language". Submitted testimonies will be statistically analyzed evidencing the specific responses to the different phenomena in space and time. On the basis of obtained results the questionnaire project could be extended to national level

    The Cotoncello Shear Zone (Elba Island, Italy): The deep root of a fossil oceanic detachment fault in the Ligurian ophiolites

    Get PDF
    The ophiolite sequences in the western Elba Island are classically interpreted as a well-exposed ocean-floor section emplaced during the Apennines orogeny at the top of the tectonic nappe-stack. Stratigraphic, petrological and geochemical features indicate that these ophiolite sequences are remnants of slow-ultraslow spreading oceanic lithosphere analogous to the present-day Mid-Atlantic Ridge and Southwest Indian Ridge. Within the oceanward section of Tethyan lithosphere exposed in the Elba Island,we investigated for the first time a 10s of meters-thick structure, the Cotoncello Shear Zone (CSZ), that records high-temperature ductile deformation. We used a multidisciplinary approach to document the tectono-metamorphic evolution of the shear zone and its role during spreading of the western Tethys. In addition, we used zircon U–Pb ages to date formation of the gabbroic lower crust in this sector of the Apennines. Our results indicate that the CSZ rooted below the brittle–ductile transition at temperature above 800 °C. A high-temperature ductile fabric was overprinted by fabrics recorded during progressive exhumation up to shallower levers under temperature b500 °C.Wesuggest that the CSZ may represent the deep root of a detachment fault that accomplished exhumation of an ancient oceanic core complex (OCC) in between two stages of magmatic accretion.We suggest that the CSZ represents an excellent on-land example enabling to assess relationships between magmatism and deformation when extensional oceanic detachments are at work

    Fluid transfer and vein thickness distribution in high and low temperature hydrothermal systems at shallow crustal level in southern Tuscany (Italy)

    Get PDF
    Geometric analysis of vein systems hosted in upper crustal rocks and developed in high and low temperature hydrothermal systems is presented. The high temperature hydrothermal system consists of tourmaline-rich veins hosted within the contact aureole of the upper Miocene Porto Azzurro pluton in the eastern Elba Island. The low temperature hydrothermal system consists of calcite-rich veins hosted within the Oligocene sandstones of the Tuscan Nappe, exposed along the coast in southern Tuscany. Vein thickness distribution is here used as proxy for inferring some hydraulic properties (transmissivity) of the fluid circulation at the time of veins’ formation. We derive estimations of average thickness of veins by using the observed distributions. In the case of power law thickness distributions, the lower the scaling exponent of the distribution the higher the overall transmissivity. Indeed, power law distributions characterized by high scaling exponents have transmissivity three order of magnitude lower than negative exponential thickness distribution. Simple observations of vein thickness may thus provides some clues on the transmissivity in hydrothermal systems

    High‐P (P = 1.5–1.8 GPa) blueschist from Elba: Implications for underthrusting and exhumation of continental units in the Northern Apennines

    Get PDF
    The Acquadolce Subunit on the Island of Elba, Italy, records blueschist facies met- amorphism related to the Oligocene–early Miocene stages of continental collision in the Northern Apennines. The blueschist facies metamorphism is represented by glaucophane- and lawsonite-bearing metabasite associated with marble and calcs- chist. These rock types occur as lenses in a schistose complex representing fore- deep deposits of early Oligocene age. Detailed petrological analyses on metabasic and metapelitic protoliths, involving mineral and bulk-rock chemistry coupled with P–T and P–T–X(Fe 2 O 3 ) pseudosection modelling using PERPLE_X, show that the Acquadolce Subunit recorded nearly isothermal exhumation from peak pressure– temperature conditions of 1.5–1.8GPa and 320–370°C. During exhumation, peak lawsonite- and possibly carpholite- or stilpnomelane-bearing assemblages were overprinted and partially obliterated by epidote-blueschist and, subsequently, albite- greenschist facies metamorphic assemblages. This study sheds new light on the tec- tonic evolution of Adria-derived metamorphic units in the Northern Apennines, by showing (a) the deep underthrusting of continental crust during continental collision and (b) rapid exhumation along ‘cold’ and nearly isothermal paths, compatible with syn-orogenic extrusion

    Preuves paléontologiques d'un ùge Cambrien supérieur dans la région d'Arburese, SW de la Sardaigne

    Get PDF
    New palynological investigations allowed a better definition of the age of terrigenous deposits of the Monte Fonnesu tectonic Unit, exposed in the Arburese area (SW Sardinia). The section investigated consists of a coarsening upwards positive sequence, up to 10 m thick, that is made up of quartz-arenitic sandstones and light gray quartzite beds (0.5 m thick), interbedded with thin beds of black shale. In the lower part of the section, two quartzitic levels are rich in lingulid (brachiopods) shell fragments. This is the first report of macrofossils from the Monte Fonnesu Unit. Samples collected for palynological analyses in the black shale at the base and at the top of the lowest quartzitic level yielded a Late Cambrian acritarch microflora that can be correlated with the Peltura trilobite Superzone. The Late Cambrian age assigned to the lower part of the sequence allows us to define more precisely the age of Mt. Fonnesu sandstone, which in consequence is bracketed between the Late Camb..

    Structural characterization and K–Ar illite dating of reactivated, complex and heterogeneous fault zones: lessons from the Zuccale Fault, Northern Apennines

    Get PDF
    We studied the Zuccale Fault (ZF) on Elba, part of the Northern Apennines, to unravel the complex deformation history that is responsible for the remarkable architectural complexity of the fault. The ZF is characterized by a patchwork of at least six distinct, now tightly juxtaposed brittle structural facies (BSF), i.e. volumes of deformed rock characterized by a given fault rock type, texture, colour, composition, and age of formation. ZF fault rocks vary from massive cataclasite to foliated ultracataclasite, from clay-rich gouge to highly sheared talc phyllonite. Understanding the current spatial juxtaposition of these BSFs requires tight constraints on their age of formation during the ZF lifespan to integrate current fault geometries and characteristics over the time dimension of faulting. We present new K–Ar gouge dates obtained from three samples from two different BSFs. Two top-to-the-east foliated gouge and talc phyllonite samples document faulting in the Aquitanian (ca. 22 Ma), constraining east-vergent shearing along the ZF already in the earliest Miocene. A third sample constrains later faulting along the exclusively brittle, flat-lying principal slip surface t

    The heterogeneous ice shell thickness of Enceladus

    Get PDF
    Saturn's moon Enceladus is the smallest Solar System body that presents an intense geologic activity on its surface. Plumes erupting from Enceladus' South Polar terrain (SPT) provide direct evidence of a reservoir of liquid below the surface. Previous analysis of gravity data determined that the ice shell above the liquid ocean must be 30-40 km thick from the South Pole up to 50° S latitude (Iess et al., 2014), however, understand the global or regional nature of the ocean beneath the ice crust is still challenging. To infer the thickness of the outer ice shell and prove the global extent of the ocean, we used the self-similar clustering method (Bonnet et al., 2001; Bour et al., 2002) to analyze the widespread fractures of the Enceladus's surface. The spatial distribution of fractures has been analyzed in terms of their self-similar clustering and a two-point correlation method was used to measure the fractal dimension of the fractures population (Mazzarini, 2004, 2010). A self-similar clustering of fractures is characterized by a correlation coefficient with a size range defined by a lower and upper cut-off, that represent a mechanical discontinuity and the thickness of the fractured icy crust, thus connected to the liquid reservoir. Hence, this method allowed us to estimate the icy shell thickness values in different regions of Enceladus from SPT up to northern regions.We mapped fractures in ESRI ArcGis environment in different regions of the satellite improving the recently published geological map (Crow-Willard and Pappalardo, 2015). On these regions we have taken into account the fractures, such as wide troughs and narrow troughs, located in well-defined geological units. Firstly, we analyzed the distribution of South Polar Region fracture patterns finding an ice shell thickness of ~ 31 km, in agreement with gravity measurements (Iess et al., 2014). Then, we applied the same approach to other four regions of the satellite inferring an increasing of the ice shell thickness from 31 to 70 km from the South Pole to northern regions. By these findings, we prove the global extent of the ocean underneath the ice crust of the satellite
    • 

    corecore